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In  studying the stability of a thermally stratified fluid in the presence of a viscous 
shear flow, we have a situation in which there is an important interaction between 
the mechanism of instability due to the stratification and the Tollmien- 
Schlichting mechanism due to the shear. A complete analysis has been carried 
out for the BBnard problem in the presence of a plane Poiseuille flow and it is 
shown that, although Squire’s transformation can be used to reduce the three- 
dimensional problem to an equivalent two-dimensional one, a theorem of Squire’s 
type does not follow unless the Richardson number exceeds a certain small 
negative value. This conclusion follows from the fact that, when the stratifica- 
tion is unstable and the Prandtl number is unity, the equivalent two-dimensional 
problem becomes identical mathematically to the stability problem for spiral 
flow between rotating cylinders and, from the known results for the spiral flow 
problem, Squire’s transformation can then be used to obtain the complete three- 
dimensional stability boundary. For the case of stable stratification, however, 
Squire’s theorem is valid and the instability is of the usual Tollmien-Schlichting 
type. Additional calculations have been made for this case which show that the 
flow is completely stabilized when the Richardson number exceeds a certain 
positive value. 

1. Introduction 
The effects of stratification on.the stability of inviscid, parallel shear flows have 

been extensively studied in recent years (see, for example, Miles 1961 or Drazin & 
Howard 1966) and the theory of such flows would now appear to be reasonably 
complete. Attempts to extend this theory to include the effects of viscosity and 
thermal conductivity (assuming that the stratification is of thermal origin) 
have thus far been only partially successful. For example, the early work by 
Schlichting (1935) on the stability of stratified boundary layer flows included only 
the effects of viscosity and, as a result, the linearized disturbance equation that 
he used was singular. More recent work by Kuo (1963), Deardorff (1965) and 
Gallagher & Mercer (1965) on the stability of thermally stratified plane Couette 
flow avoids this particular difficulty but it fails, due to the intrinsic stability of 
plane Couette flow, to exhibit one important feature of the general problem, 
namely, the interaction between the Tollmien-Schlichting mechanism of in- 
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stability associated with the shear flow and the thermal instability associated 
with an adverse temperature gradient. In  the present paper, therefore, we have 
considered a problem with two well-defined stability limits (in the absence of 
shear it reduces to the BBnard problem and in the absence of stratification it 
reduces to the problem of plane Poiseuille flow) which then permits a complete 
discussion not only of the interaction between the two mechanisms of instability 
but also of the important relationship between two- and three-dimensional 
disturbances which appears to be typical for this class of problems. 

Consider then the stability of a viscous, heat conducting fluid confined between 
the planes y = & i d .  We suppose that the mean velocity is in the x-direction 
and that there is a mean temperature gradient maintained in the y-direction. The 
two main parameters of the problem are then the Reynolds number R associated 
with the basic flow and the Rayleigh number Ra associated with the mean tem- 
perature gradient. When R = 0 we know that instability sets in with respect to 
arbitrary three-dimensional disturbances a t  a critical Rayleigh number of 1708, 
whereas when Ra = 0 the instability sets in with respect to two-dimensional 
Tollmien-Schlichting waves a t  a critical Reynolds number of about 5400. For 
some purposes it is also convenient to introduce the Richardson number 
Ri = - Ra/64R2P, where P is the Prandtl number, which is independent of both 
viscosity and thermal conductivity. Positive values of the Richardson number 
then correspond to stable stratification and conversely. 

In  the general treatment of this problem it is clearly essential to consider three- 
dimensional disturbances. As Koppel (1 964) has shown, Squire’s (1 933) trans- 
formation can be used to reduce this three-dimensional problem to an equivalent 
two-dimensional one. From the solution of this equivalent two-dimensional 
problem it is then possible to deduce the required three-dimensional stability 
boundary and it is found that Squire’s theorem holds (i.e. that two-dimensional 
disturbances are more unstable than three-dimensional ones) if and only if 
Ri > Ris, where Ri* is small and negative. This conclusion, however, appears to 
be at  variance with Koppel’s generalization of Squire’s theorem on the basis of 
which he considered only two-dimensional disturbances. 

There is thus an important difference in the character of the problem depending 
upon whether the stratification is stable or unstable. When Ri < 0 and P = 1 
there is an exact mathematical analogy between the governing equations of the 
present problem and the problem of the stability of spiral flow between rotating 
cylinders (Hughes & Reid 1968). By exploiting this analogy together with Squire’s 
transformation it is then very easy to obtain the complete stability boundary in 
the (R, Ra)-plane from the known results for the spiral flow problem. When 
Ri > 0, however, further calculations are required and these have also been 
made for P = 1. The method of calculation is based on the asymptotic methods of 
approximation previously developed for the spiral flow problem in which we let 
R --f co for fixed values of Ri. These calculations show that when Ri > 0.0554 
the flow is completely stable. This conclusion is perhaps not unexpected 
since plane Poiseuille flow is only weakly unstable and its instability is viscous 
in origin. 
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2. The governing equations 
The linearized disturbance equations which govern the stability of a thermally 

stratified parallel shear flow have been derived previously by Koppel(l964). In 
deriving these equations the usual Boussinesq approximation was also made. For 
the present purposes it is convenient to non-dimensionalize the equations in 
terms of a characteristic length L,  = i d ,  a characteristic velocity U, equal to 
the maximum velocity of the basic flow, and a characteristic temperature 
T, = $AT, where AT is the imposed temperature difference between the two 
bounding planes. The Reynolds, Rayleigh and Richardson numbers can then be 
defined in the usual way by 

where y is the coefficient of thermal expansion. 

of the form exp {i(az ++z) - iact} then we obtain the equations 
If we now assume that all of the disturbances have a dependence on x, x and t 

{ D ~ - ( c ~ ~ + P ~ ) - ~ ~ R ( U - C ) } U  = iaRp+RU'v, 

(D2 - (a2 + p2) - iaR (U - C)}V = RDp - 4RiRB, 

{Dz- (a2++') - iaR( U -  C)}W = ipRp, 

i(au++~)+Dv = 0 

and ( 0 2 -  (01' +p2) - iaRP( U - c ) } B  = RPO'V, 

where U ( y )  and O ( y )  are the mean velocity and temperature distributions re- 
spectively and D = d/dy.  These equations, together with the boundary conditions 

u = v = w = B = O  a t  y =  f l ,  (2.3) 

define the three-dimensional problem. 
We now wish to show that this three-dimensional problem can be reduced, by 

means of Squire's transformation, to an equivalent two-dimensional problem. 
For this purpose we let 

d i ~  = au++w, B = v,  p = (di/a)p, 8 = (ol/di)B, 

di = (az++z)*, c" = c, P = P, fi = (a/di)R, wi = (&/a)2Ri. 
} (2.4) I 

The equations (2.2) are thereby reduced to the form 

(2.5) 

(2-6) 

I {D2 - di2 - iaB( U - c")}Q = idi%@ + fi U'B, 
{D2 - di2 - iEB( U - E)}B = fiD@ - 4Rifi8, 

idiQ + DB = 0 

and (02-&2-idiBP(U-c")}8 = BPO'B. 

These equations, together with the boundary conditions 

. i i = ~ = 8 = 0  a t  y =  + I ,  

obviously have the same mathematical structure as equations (2.2) and (2.3) 
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with /3 = w = 0 and they thus define the equivalent two-dimensional problem. 
Koppel's generalization of Squire's theorem immediately follows from this 
result and states that 'the three-dimensional problem is equivalent to a two- 
dimensional problem a t  a smaller Reynolds number and a larger Richardson 
number '. Since the Richardson number is not invariant with respect to Squire's 
transformation, however, it does not follow that we can simply consider two- 
dimensional disturbances from the outset, i.e. simply set /3 = w = 0 in (2.2) 
and (2.3). Instead we must consider the equivalent two-dimensional problem 
defined by (2.5) and (2.6); from the solution of this problem we can then derive, 
by means of the transformation (2.4), the required solution of the three-dimen- 
sional problem. 

We now introduce a stream function $(y)exp{i&(P--Et)} in the usual way, 
where EP = ax + p z ,  so that .ii = $ r  and v" = - iE$. The equations which govern 
the equivalent two-dimensional problem can then be written in the form 

L4$ = 4 2 8  and L2g = - W$, (2.7) 

(2 .8)  
where 

and 

On eliminating 8 between these equations we have 

L, = (iERF)-1( D2 - 62)  - ( U - c") 

L, = (i&)-l(p - &2 ) 2 - (U-Z)(D2-E2)+77".  

L,L,$ = - 4fii@'$, 

together with the boundary conditions 

$=$'=L,$=O at y =  -+_I.  (2.10) 

U(y) = 1-y2 and O(y) = y. (2.11) 

In  the present problem the mean velocity and temperature distributions have 
the simple forms 

But, just as in the usual stability theory for nearly parallel shear flows, the linear- 
ized disturbance equations derived here may be applicable to more general classes 
of velocity and temperature distributions. 

3. Results for unstable stratification 
When Ri < 0 and P = 1, the equivalent two-dimensional problem defined by 

equations (2.9) and (2.10) becomes mathematically identical with the equations 
that govern the stability of spiral flow between rotating cylinders provided we 
identify the Rayleigh number in the present problem with the Taylor number in 
the spiral flow problem. The relationship between these two problems is thus a 
simple generalization of the well-known analogy between the usual BBnard and 
Taylor problems. The results obtained recently by Hughes & Reid (1968) for 
the spiral flow problem provide the required solution of the equivalent two- 
dimensional problem from which, by means of Squire's transformation, we can 
now obtain the solution of the three-dimensional problem. 

The precise relationship between the two- and three-dimensional problems 
follows immediately from the fact that the Rayleigh number remains invariant 
under Xquire's transformation. Thus, if we let aldi = cos h say, so that a = R cos h 
and Ra = Ra, then we can easily obtain the family of stability boundaries shown 
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in figure 1. The curve labelled h = 0" is the stability boundary of the equivalent 
two-dimensional problem obtained from the solution of the spiral flow problem 
and the other curves follow from it by a simple translation. From this construc- 
tion it is clear that we have stability only for that part of the (R, 4Ra)-plane which 
is interior to the envelope of these curves. 

- 

1\=90" 

- 
lo5 

R 
FIGURE 1. The construction of the three-dimensional stability boundary from the solution 

of the equivalent two-dimensional problem for the case of unstable stratification. 

Thus, the required three-dimensional stability boundary consists of two parts. 
On one part of the boundary ( A  = 90" and Ra = 1708) the instability is purely 
thermal in origin and leads to steady convection in the form of longitudinal rolls 
whose axes are in the direction of the mean flow. On the other part of the boun- 
dary ( A  = 0" and R = 5400), however, the instability leads to the usual two- 
dimensional Tollmien-Schlichting waves. 

Since the Richardson number varies monotonically along the stability boun- 
dary, there exists a unique value Ri, = - 1708/64(5400)2 = - 0.92 x which 
marks the abrupt transition from one type of instability to the other. For 
Ri < Ri,, Squire's theorem is not valid and it is necessary to determine the 
stability boundary as outlined above; for Ri > Ri,, however, Squire's theorem is 
valid and we need only consider two-dimensional disturbances. The smallness 
of Ri, serves to emphasize the dominant role of thermal instability for negative 
values of the Richardson number. 

4. Results for stable stratification 
When the Richardson number is positive, the effect of the stratification is 

purely stabilizing. Although the governing equations for the equivalent two- 
dimensional problem with P = 1 retain the same form as the equations governing 
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the spiral flow problem, the sign of the term on the right-hand side of (2.9) is 
now negative and additional calculations are therefore required. Fortunately, 
however, these calculations are substantially simpler than in the case of the spiral 
flow problem since it was found to be unnecessary to use either of the viscous 
corrections to the singular inviscid solutions or the composite viscous solutions 
of the Tollmien type. Furthermore, since Squire's theorem is now valid, we need 
only consider two-dimensional disturbances and we can therefore drop the tildes 
throughout the subsequent discussion. The governing equation then becomes 

L2L4#= -4Ri4 (4.1) 

and for an even solution we impose the boundary conditions 

# = q Y =  L4# = 0 at y =  --I and # '=  #"'= qP= 0 at y =  0. (4.2) 

The general asymptotic theory for an equation of this type has recently been 
discussed in detail by Hughes & Reid (1968) and we shall therefore describe 
briefly only those parts of the theory that are essential for the present purposes 
or which require further modification. The approximations to the solutions of 
(4.1) that will be used here are based on letting R + co for fixed values of Ri and, 
as in the usual stability theory for parallel shear flows, they involve solutions of 
the so-called viscous and non-viscous type. In  this discussion we shall defer 
temporarily the imposing of the condition that P = 1. 

Consider first a formal expansion of the solution in inverse powers of iaR of 
the form 

where qVJ)(y) satisfies the inviscid equation 

#(y) = #O)(y) + (iaR)-'#(')(y) + . . ., 

( u - c)2 ( 0 2  - a2 ) $ - ( U - C ) U " # + ~ R ~ #  = 0. 

(4.3) 

(4.4) 

This equation is independent of the Prandtl number and is, of course, familiar 
from the inviscid stability theory for parallel shear flows in a stratified fluid (see, 
for example, Drazin & Howard 1966). In  the present context, however, we are 
primarily interested in the extent to which the solutions of this equation provide 
approximations to two solutions of equation (4.1). These solutions can conveni- 
ently be written in the form 

(SAY) = (Y - Yc)plp,(Y - Y,) and = (Y - Yc)pzpz(Y - y,), (4.5) 

p ( ~ - 1 ) + 4 R i / U 6 ~  = 0 (4.6) 

where p ,  and p ,  are the roots of the indicia1 equation 

(with p1 > p 2 )  and Pl(y - Y,) and P2(y - y,) are power series in y - yc with leading 
terms of unity. Both of these solutions have algebraic branch points at  the critical 
point yc where U - e = 0, and therefore neither of them can provide valid approxi- 
mations in a full complex neighbourhood of y,. By considering the viscous ap- 
proximations to dl and q5z, however, Hughes & Reid (1968) have shown that they 
do provide valid asymptotic approximations in the usual sector 

- 8 ~  7 < arg(y-y,) < in- 
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of the complex y-plane. Furthermore, since 0 < p 2  < < p1 < 1 in the present 
calculations, the singularities in $1 and $2 are sufficiently mild that it is unneces- 
sary to include either of the viscous corrections in the characteristic equation. 

Consider next the approximations of viscous type. Since the values of c in the 
present problem never exceed the values found for plane Poiseuille flow, it is 
sufficient to consider only the so-called local turning-point approximations, 
thereby avoiding the further complications involved in the use of composite 
approximations of the Tollmien type. For this purpose we first make the trans- 
formation 

where 6 = (y-yJ/e and E = (iaRUE)A, 

and then expand the solution in powers of e in the form 

$(!I) = x(6) (4.7) 

x( 6, E )  = X'O'(6) + ex(l)( 6) + . . . . 

(P-lDZ- 6) (D2-<)D2X = - (4Ri/UEZ)X, 

(4.8) 

The first approximation ~ ( ~ ' ( 6 )  then satisfies the equation 

(4.9) 

where D now stands for d/d<. Koppel(l964) has obtained integral representations 
for the solutions of this equation, but when P =l 1 they are of a complicated form 
with kernels that involve Whittaker functions. When P = 1, however, it can 
easily be shown that all of the solutions of equation (4.9) can be obtained from 
the two third-order equations 

Xm-6Xr+p,iX = 0, (4.10) 

where pi (i = 1,2) are the roots of the indicia1 equation (4.6). The solutions of 
equation (4.10) that have strictly neutral asymptotic expansions in the sector 
-+rr < arg 6 < 0 provide the first viscous corrections to the singular inviscid 
solutions and thus determine the sector of validity of and $2. As was mentioned 
above, however, the uncorrected forms of $1 and $2 are completely adequate 
for the present purposes. Since we expect that viscous effects will be negligible 
in the central part of the channel, the only solutions of equation (4.10) that need 
be considered further are 

x 3 ( 6 )  = 'l(g7pl) and x5(6) = Al(6,1)2), (4.11) 

where A,(&%) are the solutions of (4.10) that are subdominant in the sector 
Iarggl < +rr. This last condition serves to define the solutions Al(5,pi) uniquely 
to within a multiplicative constant. 

To obtain an approximation to the characteristic equation it is convenient 

@ = A41 + $2 (4.12) first to let 

be the solution of the inviscid equation that satisfies the boundary condition 
CD'(0) = 0. Since U(y) is an even function of y, CD automatically satisfies the other 
two boundary conditions at y = 0. We then consider the approximation 

$ = @+'3X3+'6X5J (4.13) 
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which satisfies the boundary conditions at y = 0 to within an exponentially 
small error, and the satisfaction of the three boundary conditions at y = - 1 
then leads to the required characteristic equation. The third of these boundary 
conditions, however, can be considerably simplified; for, consistent with the 
approximations already made, we have 

L4@+-  4Ri @ and L4x+e-1Ul (1 -p )x ’ .  (4 .14)  
U-C 

In  this way we obtain the characterstic equation in the relatively simple form 

where z = (aRU#( 1 + yc) as usual and P(z, p )  is the generalized Tietjens function 

(4.16) 

For fixed values of Ri, the zeros of A define a curve of neutral stability in the 
(a,@-plane. Numerical methods for the finding of these zeros are now well- 
known (see, for example, Mack 1965; Isaacson & Keller 1966; or Hughes & Reid 
1968) and need not be repeated here. The calculations can be substantially 
simplified, however, if we let 7 = 4Ri/  UL2 and consider the values of 7 rather than 
Ri to be fixed. The parameter 7 can be thought of as a Richardson number based 
on the velocity gradient a t  the critical point rather than at  the boundary and, 
since the values of c are always less than about 0.27, the difference between these 
two parameters can never become large (see table 1 ) .  The curves of neutral 
stability obtained in this way are shown in figure 2 and the corresponding be- 
haviour of the wave-speed c is shown in figure 3. One interesting feature of these 
results is that as R +- co for a fixed positive value of 7, a -+ a, > 0 and c -+ 0 along 
both branches of the curve. The approach to this limit will be examined in more 
detail below, but it should be observed here that this behaviour is consistent with 
the fact that the flow is stable in the inviscid limit; for finite values of the Rey- 
nolds number, the instability is entirely viscous in origin. For 7 = 0, there is a 
‘kink’ in the neutral curve as shown in figure 2 which requires some comment. 
Computationally, it is due to the ‘loop ’ in the ordinary Tietjens function; more 
basically, however, it would appear to be due to the lack of uniformity in the 
usual asymptotic approximations. Such kinks do not occur in the other curves 
shown in figure 2 simply because along them x never becomes as large as 6 (see 
table 2 below). As 7 (or R i )  approaches the value 0.0554, we approach the con- 
dition for complete stability as shown in figure 4,  and for 7 > 0.0554 we would 
conclude that stratified plane Poiseuille flow is completely stable. 

The limiting solution as R + co along the curves of neutrat stability 

As R-+ co along a curve of neutral stability, we find that a+ as and c+ 0 along 
both branches but that z approaches different finite limits, x$ say, along the 
upper and lower branches respectively. This situation would appear to be some- 
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what unusual and we shall therefore attempt a partial explanation of it. Accord- 
ing to the results obtained by Miles (1961) in his study of the inviscid stability 
theory for stratified parallel flows, the limiting form of the inviscid solution, 
a, say, must be a multiple of either 9, or $2. From the present numerical work it 
would appear that A -+a in equation (4.12) as c + 0  and hence that @, is a mul- 
tiple of The limiting value of the wave-number a, must be determined there- 
fore as the 'eigenvalue' of the equation 

U2(Da - a:) - UU"$, + 4Ri$, = 0, (4.17) 

together with the boundary condition &(0) = 0. 

~ ~ ~~~ 

7 P1 P2 Ri z 01 C Ri x 10-2 
o*ooo 1.000 O*OOO 0.0000 3.043 1.022 0.2672 0.1754 
0.005 0.995 0.005 0.0038 3.08 1.005 0.2482 0.1925 
0.010 0.990 0.010 0.0077 3.12 0.988 0.2285 0.2134 
0.015 0.985 0.015 0.0119 3.15 0.964 0.2075 0.2396 

0.943 0.1861 0.2732 0.020 0.980 0.020 0.0163 3.19 
0-025 0.975 0.025 0.0210 3.23 0.918 0.1635 0.3182 
0.030 0.969 0.031 0.0258 3.27 0.890 0.1399 0.3811 
0.035 0.964 0.036 0.0310 3.31 0.859 0.1152 0.4753 
0.040 0.959 0.041 0.0364 3.35 0.822 0.0891 0.6319 
0.045 0.953 0.047 0.0422 3.39 0.781 0.0617 0.9415 
0-050 0.947 0.053 0.0489 3-43 0-732 0.0329 1-833 
0.052 0.945 0.055 0.0509 3.45 0.708 0.0209 2,931 
0.054 0.943 0.057 0.0535 3-47 0.682 0.0090 6-963 
0.0554 0.941 0.059 0.0554 3.485 0.656 O*OOOO 03 

TABLE 1. The values of the minimum critical Reynolds number and related parameters. 

I I .  I I I I l l 1  I 1 I I 1  l l l l  I 1 I I 1  1 1 1 1  

10 lo2 lo3 104 
3 4  

0.01 

FIGURE 2. The curves of neutral stability for the case of stable stratification. 



30 K .  S. Gage and W.  H .  Reid 

a 
FIGURE 3. The relationship between the wave-number a and the wave-speed c along the 
neutral curves of figure 2.  The circled points correspond to the minimum critical Reynolds 
number. 

To obtain the limiting values of z,, however, it is necessary to obtain the limit- 
ing form of the characteristic equation (4 .15)  as R+m.  For this purpose it is 
necessary to have a more precise estimate of the dependence of A on c as c +  0. 
On closer examination of the numerical results it appears that 

A --f a$c-@i-p2) as c --f 0. (4.18) 

It then follows from ( 4 . 5 )  and (4.12) that 
@( - 1 ) - - f ~ ~ z ( a $ 2 - ~ i e - ~ i n i  + 2?~2e-~zn i )  } (4.19) 

and (1 +y,.)@’( - I )+  -cPz(u$p12-pie-pini +p22-p2e-pzni) 

as c-f 0 and hence that their ratio approaches a finite limit. Thus, the limiting 
form of the characteristic equation is obtained in the form 

A1(aS, 2,; Ri)  = lim (( 1 + y,)A(a, c, z ;  Ri)} 
c-0 

= P1-132 + PlPZ{P(% 131) - P(zs ,  P2)l 

+As(CL,,Ri){~i~F(zs,Pi)-Pz~(zs,Pz)} = 0, (4 .20)  
where 

(4.21) 

and the roots pl and p8 are to be evaluated for c = 0, i.e. r,~ = R i .  For 
0 < Ri < 0.0554, equation (4.20) admits pairs of solutions (a$, z $ )  as given in 
table 2 ;  for Ri = 0-0554, a: = a; and z$ = x i ;  and, for Ri > 0.0554, no real 
solutions exist and we have complete stability. 

(4.22) These results show that (23z+,a;)c-l, 
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5. Concluding remarks 
One of the most striking features of the present results is the sharp transition 

that was found between the thermal mode of instability which sets in at  a value of 
the Rayleigh number that is independent of the shear and the Tollmien- 
Schlichting mode of instability which appears only at very high shear rates. This 
transition occurs a t  a small negative value of the Richardson number and it is 
tempting, therefore, to suggest that this phenomenon may be related to the transi- 
tion that is observed in heat flux measurements in the atmospheric boundary 
layer (see, for example, Priestley 1959; or Townsend 1962). To obtain a quanti- 
tative comparison between theoretical and observational results, however, it will 
clearly be necessary to consider the stability of stratified shear flows for more 
general classes of temperature and velocity profiles. 

The research reported in this paper has been supported by the National Science 
Foundation through a Traineeship held by K.X.G. and through Grant no. 
GK-944 (W. H. R.). 
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